Optimal k-fold colorings of webs and antiwebs

نویسندگان

  • Manoel B. Campêlo
  • Ricardo C. Corrêa
  • Phablo F. S. Moura
  • Marcio C. Santos
چکیده

A k-fold x-coloring of a graph is an assignment of (at least) k distinct colors from the set {1, 2, . . . , x} to each vertex such that any two adjacent vertices are assigned disjoint sets of colors. The smallest number x such that G admits a k-fold x-coloring is the k-th chromatic number of G, denoted by χk(G). We determine the exact value of this parameter when G is a web or an antiweb. Our results generalize the known corresponding results for odd cycles and imply necessary and sufficient conditions under which χk(G) attains its lower and upper bounds based on the clique, the fractional chromatic and the chromatic numbers. Additionally, we extend the concept of χcritical graphs to χk-critical graphs. We identify the webs and antiwebs having this property, for every integer k ≥ 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On optimal k-fold colorings of webs and antiwebs

A k-fold x-coloring of a graph is an assignment of (at least) k distinct colors from the set {1, 2, . . . , x} to each vertex such that any two adjacent vertices are assigned disjoint sets of colors. The smallest number x such that G admits a k-fold x-coloring is the k-th chromatic number of G, denoted by χk(G). We determine the exact value of this parameter when G is a web or an antiweb. Our r...

متن کامل

Antiwebs are rank-perfect

We discuss a nested collection of three superclasses of perfect graphs: near-perfect, rank-perfect, and weakly rank-perfect graphs. For that we start with the description of the stable set polytope for perfect graphs and allow stepwise more general facets for the stable set polytopes of the graphs in each superclass. Membership in those three classes indicates how far a graph is away from being...

متن کامل

Characterizing and bounding the imperfection ratio for some classes of graphs

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations with respect to different concepts. Perfect graphs are, for instance, precisely those graphs G where the stable set polytope STAB(G) equals the fractional stable set polytope QSTAB(G). The dilation ratio min{t : QSTAB(G) ⊆ t STAB(G)} of the two polytopes yields the imperfection ratio ...

متن کامل

On the Bit Extraction Problem

Consider a coloring of the n-dimensional Boolean cube with c = 2 colors in such a way that every kdimensional subcube is equicolored, i.e. each color occurs the same number of times. We show that for such a coloring we necessarily have (k − 1)/n ≥ θc = (c/2 − 1)/(c − 1). This resolves the “bit extraction” or “t-resilient functions” problem (also a special case of the “privacy amplification” pro...

متن کامل

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1108.5757  شماره 

صفحات  -

تاریخ انتشار 2011